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Solution to Assignment 10

Supplementary Problems

1. A vector field F is called radial if F(x, y, z) = f(r)(x, y, z), r = |(x, y, z)|, for some function

f . Show that every radial vector field is conservative. You may assume it is C1
in R3

.

Solution. Let �(x, y, z) be the potential. Since f is radially symmetric, we believe that

� is also radially symmetric. Let �(x, y, z) = '(r), r =

p
x2 + y2 + z2. We have

@�

@x
= '0

(r)
x

r
,

@�

@y
= '0

(r)
y

r
,

@�

@z
= '0

(r)
z

r
.

By comparison, we see that � is a potential for F if '0
(r)/r = f(r). Therefore,

'(r) =

Z r

0
tf(t) dt ,

is a potential for F.

2. Let F = (P,Q) be a C1
-vector field in R2

away from the origin. Suppose that Py = Qx.

Show that for any simple closed curve C enclosing the origin and oriented in positive

direction, one has

I

C
Pdx+Qdy = lim

"!0
"

Z 2⇡

0
[�P (" cos ✓, " sin ✓) sin ✓ +Q(" cos ✓, " sin ✓) cos ✓] d✓ .

What happens when C does not enclose the origin?

Solution. Let C" be the circle entered at the origin with radius " which is so small to

be enclosed by C. Connect C to C" by a path C 0
so that C,±C 0, and C" form a closed

path lying outside the origin and bounding a set on which the compatibility conditions are

satisfied. By Green’s theorem the line integral over C is equal to the line integral over C",

and that is it.

The line integral vanishes when C does not include the origin.

3. We identity the complex plane with R2
by x+iy 7! (x, y). A complex-valued function f has

its real and imaginary parts respectively given by u(x, y) = Ref(z) and v(x, y) = Imf(z).
Note that u and v are real-valued functions. The function f is called di↵erentiable at z if

df

dz
(z) = lim

w!0

f(z + w)� f(z)

w
,

exists.

(a) Show that f is di↵erentiable at z implies that the partial derivatives of u and v exist

and
@u
@x =

@v
@y and

@u
@y = � @v

@x , hold. Hint: Take w = h, ih, where h 2 R and then let

h ! 0.

Solution. Identify z with (x, y). As f is di↵erentiable at z, for real h,

f 0
(z) = lim

h!0

f(z + h)� f(z)

h
= lim

h!0

✓
u(x+ h, y)� u(x, y)

h
+ i

v(x+ h, y)� v(x, y)

h

◆

= lim
h!0

u(x+ h, y)� u(x, y)

h
+ i lim

h!0

v(x+ h, y)� v(x, y)

h
.
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Using the fact that an + ibn ! a + ib if and only if an ! a and bn ! b (here

f 0
(z) = a+ ib), we see that @u/@x and @v/@x exists and

@u

@x
+ i

@v

@x
(x, y) = f 0

(z) .

Next, we consider purely imaginary ih,

f 0
(z) = lim

h!0

f(z + h)� f(z)

ih
= lim

h!0

✓
�i

u(x, y + h)� u(x, y)

h
+

v(x, y + h)� v(x, y)

h

◆

= �i lim
h!0

u(x, y + h)� u(x, y)

h
+ lim

h!0

v(x, y + h)� v(x, y)

h
.

As before, @u/@y and @v/@y exists and

�i
@u

@y
(x, y) +

@v

@y
(x, y) = f 0

(z) .

By comparison, we have @v/@y = @u/@x and �@u/@y = @v/@x at (x, y).

(b) Propose a definition of
R
C f dz, where C is an oriented curve in the plane, in terms

of the line integrals involving u and v.

Solution. Formally we have fdz = (u + iv)(dx + idy) = udx � vdy + i(vdx + udy).
So, we define Z

C
f dz =

Z

C
udx� vdy + i

Z

C
vdx+ udy .

Note that the right hand side are two line integrals.

(c) Suppose that f is di↵erentiable everywhere in C. Show that for every simple closed

curve C, I

C
f dz = 0 .

Solution. Use (a) we see that P = u,Q = �v as well as P = v,Q = u satisfy the

compatibility conditions. Hence, by Green’s theorem,

I

C
f dz = 0 .

.

The conclusion in (c) is called Cauchy’s theorem. It is a fundamental result in complex

analysis.
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